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The magnetophoretic properties of a system of equidistant identical rectangular ferromagnetic cylinders lo-
cated in one plane and exposed to a uniform magnetic field are considered. The analytical solution of the
problem on distribution of the magnetic field and the magnetophoretic potential in magnetization of the system
to saturation along the packing plane and across it is obtained. The influence of geometric and magnetic pa-
rameters on the magnetophoretic properties of the system is investigated.

Since the mid-1970s, the method of high-gradient magnetic separation has attracted attention in many spheres
of activity, including water and gas purification, purification of clays, chemical technologies, medicine, and biology
(see [1–8]). High-gradient magnetic filters are created in practice by application of a strong homogeneous magnetic
field to a volume in which small ferromagnetic bodies are distributed. The smaller the separated particles and the
weaker their magnetic properties, the stronger must be the magnetic field and the smaller the size of the elements of
the ferromagnetic packing. The efficiency of a magnetic filter is determined by a number of factors, including the
shape of the ferromagnetic bodies and the geometry of their packing, the direction of magnetization of the packing and
the direction of suspension flow, and the character of the magnetic properties of the particles separated. Information on
the distribution of the magnetophoretic potential in different ferromagnetic structures is required for the creation of ef-
ficient filters of specific application. Of greatest interest from both the theoretical and practical viewpoints are ordered
(periodic) structures. The periodicity of the structure simplifies the analysis and enables one to realize the principle of
accumulation of the effect of magnetophoretic separation in motion of the suspension, as evidenced by the results of
investigation of a linearly ordered system of ferromagnetic spheres [9] and a plane-ordered system of circular ferro-
cylinders [10]. In the present work, we have studied the magnetophoretic potential of a structure representing a plane-
ordered system of ferromagnetic cylinders of a rectangular cross section.

Magnetic Self-Field of the Magnetized Structure. Let the cylinders lie in the plane (X, Y) along the X axis
of the Cartesian coordinate system X, Y, Z (see Fig. 1). The origin of the coordinate system is located on the axis of
one cylinder to which the number n = 0 is applied. The cylinder width is 2a, the height is 2B, and the step of pack-
ing is S. The direction of the X, Y, and Z axes is specified by the unit vectors i, j, and k. The external magnetic field
H0 = H0e is directed along (e = j) or across (e = k) the packing plane. We assume that the field is large
(H0 Â 4πMs), so that the cylinders are magnetized to saturation. Let A0

(0)(X0, Y0, Z0) be the point belonging to the cyl-
inder with No. 0. Each of such points generates a set of points A0

(n)(X0, Y0
(n), Z0), where Y0

(n) = Y0 + nS, belonging to
all the remaining cylinders.

The intensity of the field produced at the point A(X, Y, Z) of an infinitely small volume dX0dY0
(n)dZ0 of the

cylinder n, which is constructed at the point A0
(n), is determined by the relation
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In these formulas and in what follows, the distances are measured in the units of the cylinder half-width (x = X/a, b
= B/a, s = S/a).

The total field of the structure is computed as follows. First, by integration of relation (1) with respect to x0
and z0 we find the field of the thin layer y0, y0 + dy0 of the nth cylinder and then carry out summation over n from
−∞ to +∞ and integration of the result with respect to y0, i.e.,
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For compact representation of the results we introduce the notation ŷ = y/s, ẑ = z/s, b
^
 = b/s, A(ŷ) = cot (πŷ),

B(ẑ, b
^
) = coth [π(ẑ + b

^
)], and G(ŷ, ẑ, b

^
) = arctan [A(s−1 + ŷ)B−1(ẑ, b
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 (ẑ, b

^) + 







1 − A (s−1) A (ŷ)
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(3)

The intensity of the self-field of the structure is represented in the form H′ = 2πMsh. Now the results of com-
putation from formula (2) for the cases of longitudinal and transverse magnetization have the form

hy
N
 (y, z, b, s) = N (y, z, b, s) ,   hz

N
 (y, z, b, s) = T (y, z, b, s) ,   e = j ;

hy
M

 (y, z, b, s) = T (y, z, b, s) ,   hz
M

 (y, z, b, s) = − N (y, z, b, s) ,   e = k .

(4)

Magnetophoretic Potential of the Magnetized Structure. The total magnetic field of the system is equal to
the sum of the magnetizing field and the self-field, H = H0 + H′. According to [9, 10], the force acting on a dia- or
paramagnetic particle in a nonuniform magnetic field (on condition that the nonuniformity scale is large as compared
to the particle size) can be expressed by the magnetophoretic potential of the filtering structure Φ:

Fm = − ∇Φ  ,   Φ = − 
1
2

 ∆χv (2πMs)
2
 [h

2
 + Peh] ,   P = H0

 ⁄ πMs . (5)

Here v is the particle volume and ∆χ = χ − χ0 is the difference of the magnetic susceptibilities of the particle and the
carrier liquid. We introduce the dimensionless magnetophoteric potential ϕ, taking the value of the potential of the
magnetic self-field of a circular cylinder at its forward point as the scale [10]:

Fig. 1. Geometry of the problem.
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Φ∗
 = 

1
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 ∆χv (2πMs)
2
 .

We have

ϕ B Φ ⁄ Φ
∗
 = ϕ1 + ϕ2 ,   ϕ1 = − h

2
 ,   ϕ2 = − P (eh) . (6)

Using relations (10) we find for the longitudinally and transversely magnetized structures
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N
 = ϕ1

M
 = − N

2
 − T

2
 ,   ϕ2

N
 = − ϕ2

M
 = − PN . (7)

The minimum value of P is determined by the condition of magnetization of the cylinders to saturation. The
necessary field is evaluated by the relation H0 ≥ 4πMs. Consequently, P ≥ 4.

We note (see [9, 10]) that the magnetophoretic potential made dimensionless by the method adopted refers to
paramagnetic particles (∆χ > 0) and that taken with an opposite sign refers to diamagnetic particles (∆χ < 0). In other
words, paramagnetic particles move in the direction of the minimum potential ϕ whereas diamagnetic particles move
in the direction of the maximum potential. The quantity ϕ1 expresses the magnetophoretic potential of the self-field of
a filtering structure. In particular, if the cylinders are manufactured from a hard magnetic material with remanence
Ms, the quantity ϕ1 comprises the total potential of the system with a switched-off external field. The quantity ϕ2 rep-
resents a result of the interference of the self-field and the external field. There are significant qualitative differences
between the intrinsic potential and the interference potential. The first is strictly negative and consequently has the at-

Fig. 2. Isolines of magnetophoretic potential of the system of square ferro-
cylinders for different structural steps s and different methods of magnetiza-
tion: constant magnets in the zero external field (a); soft magnetic cylinders
are magnetized by the field P = 4 longitudinally (b) and transversely (c).
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traction of paramagnetic particles and the repulsion of diamagnetic particles as its effect. The second can change its
sign at different points, thus creating prerequisites for sedimentation of diamagnetic particles. The value of the intrinsic
potential of the structure (naturally, on attainment of magnetic saturation) is independent of the external-field intensity,
whereas the interference potential increases in proportion to H0.

Thus, the distribution of magnetophoretic potential is determined by the direction of magnetization, the dimen-
sionless field intensity P, the ratio of the height of the cylinder to its width b, and the ratio of the structural step to
the cylinder half-width. To visualize the structure and intensity of the magnetophoretic field we consider the pattern of
isolines of the potential. In the case of square cylinders (b = 1) it is shown in Fig. 2 for different structural steps and
different methods of magnetization of the structure. One-fourth of a cylinder is given because of the periodicity of the
potential in the y axis and the symmetry relative to the plane z = 0. The color of the isolines (see Fig. 2) becomes
more intense with decrease in the corresponding algebraic value of the potential, i.e., paramagnetic particles move in

Fig. 3. Isolines of magnetophoretic potential of the system of wide (b = 1/3 (a,
b)) and narrow (b = 3 (c, d)) ferrocylinders with different structural steps s for
the cases of longitudinal (a, c) and transverse (b, d) magnetization (P = 4).
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the direction of the maximum color, whereas diamagnetic particles move in the direction of the minimum. The number
of isolines in each case is equal to the rounded-off value of the quantity 4(ϕmax − ϕmin), where ϕmax and ϕmin are the
maximum and minimum values of the potential in the calculation region (on the 200 × 200 grid). Consequently, the
potential difference between neighboring isolines for all the variants is nearly the same (∆ϕ C 0.25) and the density of
the isolines enables us to compare the value of the magnetophoretic force −∇ϕ  in different situations. Figure 2 shows
the potentials of the longitudinally and transversely magnetized (in the field P = 4) system together with its intrinsic
potential in a zero field.

According to the pattern presented, the structure of the magnetophoretic field is determined by a set of the
singular points at the corners of the cylinders. All the isolines pass through the corners in the vicinity of which the
magnetophoretic force attains its maximum value. One part of the isolines leaving a given corner of a cylinder enters
the adjacent corner of the neighboring cylinder and the other part enters the adjacent corners of the same cylinder. The
bundles of isolines connecting the neighboring cylinders characterize the collective nature of the system’s magneto-
phoretic field. By convention the potential in the bundles connecting the neighboring cylinders is defined as the col-
lective potential and the potential in the bundles connecting the corners of one and the same cylinder is defined as the
individual potential. The first determines the effect of pulling (pushing) of particles deep into the gap between the cyl-
inders, while the second determines the attraction (repulsion) of particles to the cylinders’ surface. If the gap between
the cylinders is small, most of the potential is concentrated in collective bundles and the pulling (pushing) of particles
into the gap is the dominating feature of the magnetophoretic field. As the gap becomes wider, an ever increasing
number of isolines goes from the collective bundle to individual bundles, and the effect of pulling of particles into the
gap becomes weaker, while the effect of attraction to the cylinder surface is enhanced; the range of action of the mag-
netophoretic force in the external region is also extended ( z  > b).

The influence of the magnetization method is as follows. In the intrinsic-potential field, paramagnetic particles
are pulled deep into the gap and are attracted to the entire surface of the cylinder. In the longitudinally magnetized

Fig. 4. Isolines of magnetophoretic potential of the system of circular ferro-
cylinders under conditions analogous to those in Fig. 2.
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system, there is an analogous but much more intense magnetophoretic interaction in the region of the gap; the direc-
tion of the magnetophoretic force changes its sign on the exterior cylinder surface, here diamagnetic particles are at-
tracted. In the transversely magnetized system, the direction of the magnetophoretic force is opposite as compared to
that in the longitudinally magnetized system. The intensity of magnetophoretic interaction on the exterior cylinder sur-
face is nearly the same in both cases but it is markedly lower in the gap region in the transversely magnetized system.

Let us consider the influence of the cylinder shape (height-to-width ratio) on the structure of the magneto-
phoretic field. Figure 3 gives the pattern of the potential isoline for wide (b = 1/3) and narrow (b = 3) cylinders in
longitudinal and transverse magnetization (P = 4). The data presented together with the data in Fig. 2 provide a clear
answer to the question posed and do not require additional discussion.

It is of interest to compare the magnetophoretic fields of square and circular cylinders. Let us use the results
of [10] and construct the field of the latter (see Fig. 4) under conditions analogous to those adopted in Fig. 2 (the
same values of the structural step and the field intensity). As we see, apart from the general similarity, the fields of
the square and circular cylinders have a number of significant differences.

This work was partially financed by the Belarusian Republic Foundation for Basic Research (project T03-204).

NOTATION

S, step of packing of ferrocylinders, cm; a, cylinder half-width, cm; B, cylinder half-height, cm; b, dimension-
less half-height of the cylinder; s, dimensionless step of packing; H0 and H′, intensity of the external magnetic field
and the self-field, Oe; e, unit vector in the direction of the external magnetic field; Ms, saturation magnetization, G; P,
dimensionless intensity of the field; h, dimensionless self-field of the structure; hy

N, hy
M, hz

N, and hz
M, components of the

dimensionless self-field of the structure in longitudinal and transverse magnetization; n, cylinder No.; X, Y, Z,
Cartesian coordinates; A(X, Y, Z), arbitrary point; A0

(0)(X0, Y0, Z0), point belonging to the zero cylinder; A0
(n), point be-

longing to the nth cylinder; x, y, z, dimensionless coordinates (in the units of a); x0, y0, z0, dimensionless coordinates
of the points of the zero cylinder; x̂, ŷ, ẑ, dimensionless coordinates measured by the structural step; i, j, and k, unit
vectors of the Cartesian coordinate system; rA0

(n)
A, dimensionless radius vector from point A0

(n) to point A; γ, magnetic
susceptibility of the separated particles; χ0, magnetic susceptibility of the carrier liquid; ∆χ = χ − χ0; Φ, magneto-
phoretic potential, g⋅cm2⋅sec−2; Fm, magnetophoretic force, g⋅cm⋅sec−2; ϕ, dimensionless magnetophoretic potential; ϕ1
and ϕ2, components of the dimensionless magnetophoretic potential; A, B, G, T, and N, functions determined by rela-
tions (3). Subscripts: s, saturation; m, magnetic; max, maximum; min, minimum.
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